Dalamkeadaan normal, bahan bakar mudah bergabung dengan oksigen. Karena oksigen adalah suatu gas pembakar, maka keberadaan oksigen aan sangat menentukan keaktifan pembakaran. Suatu tempat dinyatakan masih mempunyai keaktifan pembakaran, bila kadar oksigen lebih dari 15%. .10 Di dalam dan di depan tangga diberi penerangan sebagai
Partikelpartikel gas oksigen di dalam tabung tertutup pada suhu 20°C memiliki energi kinetik 2140 J. Untuk mendapatkan energi kinetik 6420 J, kita harus menaikkan suhunya menjadi a. 879°C b. 606°C c. 589°C d. 60°C e. 40°C Diketahui: T1 = 20°C = 20 + 273 K= 293 K Ek1 = 2140 J
Kerjakansoal-soal di bawah ini di dalam buku tugas Anda! 1. Terdapat 40 mol gas ideal pada kubus kaca yang panjang ru-suknya 8 cm. Berapa banyak partikel yang terdapat di dalam kubus kaca tersebut? 2. Sebanyak 40 mol gas ideal berada pada tabung kaca yang diameternya 14 cm dan tingginya 20 cm. Jika tekanan pada tabung
1 Sebanyak 3 liter gas Argon bersuhu 27°C pada tekanan 1 atm( 1 atm = 10 5 Pa) berada di dalam tabung. Jika konstanta gas umum R = 8,314 J mol −1 K −1 dan banyaknya partikel dalam 1 mol gas 6,02 x 10 23 partikel, maka banyak partikel gas Argon dalam tabung tersebut adalah.. A. 0,83 x 10 23 partikel B. 0,72 x 10 23 partikel C. 0,42 x 10
SoalTeori Kinetik Gas. Soal-soal teori kinetik gas di bawah ini adalah soal-soal untuk melatih kemampuan anda mengerjakan soal teori kinetik gas. Jika anda mencari soal-soal teori kinetik gas lengkap dengan pembahasanya, bisa diklik di sini. 1. Dalam sebuah wadah 64 gram gas Oksigen (M = 32 gr/mol) berada pada tekanan 1 atm dan suhu 270C .
1 Gas ideal adalah gas yang terdiri dari partikel-partikel kecil baik atom maupun molekul dalam jumlah yang sangat banyak. 2. Ukuran dari partikel gas dapat diabaikan terhadap ukuran wadahnya: 3. Setiap (every) partikel gas bergerak random (acak) ke segala arah: 4. Gaya tarik Menarik antar partikel gas dianggap tidak ada: 5.
9BJnG45. 100% found this document useful 1 vote807 views24 pagesOriginal TitleTeori Kinetik © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?100% found this document useful 1 vote807 views24 pagesTeori Kinetik GasOriginal TitleTeori Kinetik to Page You are on page 1of 24 You're Reading a Free Preview Pages 6 to 8 are not shown in this preview. You're Reading a Free Preview Pages 12 to 22 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
FisikaTermodinamika Kelas 11 SMATeori Kinetik GasTeori Kinetik Gas IdealPartikel-partikel gas oksigen di dalam tabung tertutup pada suhu 20 C memiliki energi kinetik J. Untuk mendapatkan energi kinetik J , suhu harus dinaikkan menjadi berapa?Teori Kinetik Gas IdealTeori Kinetik GasTermodinamikaFisikaRekomendasi video solusi lainnya0222Dalam suatu campuran gas hidrogen, oksigen, nitrogen, dan...Dalam suatu campuran gas hidrogen, oksigen, nitrogen, dan...0257Sepuluh liter gas ideal bersuhu 127 C mempunyai tekanan 1...Sepuluh liter gas ideal bersuhu 127 C mempunyai tekanan 1...0122Menurut teori kinetik gas, tekanan gas dalam ruangan tert...Menurut teori kinetik gas, tekanan gas dalam ruangan tert...
Kelas 11 SMATeori Kinetik GasEnergi Kinetik Rata-Rata GasGas ideal berada dalam wadah tertutup pada mulanya mempunyai tekanan P dan volume V. Apabila tekanan gas dinaikkan menjadi 4 kali semula dan volume gas tetap maka perbandingan energi kinetik awal dan energi kinetik akhir gas adalah...Energi Kinetik Rata-Rata GasTeori Kinetik GasTermodinamikaFisikaRekomendasi video solusi lainnya0218Sebuah wadah yang memiliki volume 1 m^3 mengandung 5 mol ...0203Gas He M = 2 kg/kmol dan gas Ne M =20 kg/kmol berada...0120Jika suhu mutlak suatu gas dinaikkan menjadi dua kali suh...Teks videokalau friend pada soal ini gas ideal berada dalam wadah tertutup pada mulanya mempunyai tekanan P dan volume V apabila tekanan gas dinaikkan menjadi 4 kali semula dan dijaga tetap maka perbandingan energi kinetik awal dan energi kinetik akhir gas adalah berapa Oke jadi misal diketahui bahwa tekanan awalnya kita adalah p 1 = p kemudian di keadaan akhir tekanannya berubah menjadi sebesar P 2 yaitu = 4 P Adapun volumenya di keadaan awal itu adalah Q1 yaitu = V dan Dika dan akhir ini volumenya tetap maka volumenya jika dan akhiri pada laki2 yaitu = V juga kemudian disini kita akan mencari perbandingan energi kinetik awal dan energi kinetik air berarti kita akan 1 banding Eka 2x 1 adalah energi kinetik awal yang kedua adalah energi kinetik akhirnya VOC pertama di sini Kita akan menggunakan persamaan gas ideal terlebih dahulu yaitu tensi = jadi fansnya tekanan P volume adalah jumlah mol kemudian R adalah tetapan gas ideal dan editing adalah suhu mutlaknya kemudian jadikan sinyal bisa kita pindah ruas kanan dan teknik kita pindahkan ke ruas kiri Oke jadi ini kan jumlah mol bernilai tetap dan R juga ini tetapan tetapan gas ideal laluinya ini juga tetap maka itu berarti ruas kanan ini selalu bernilai tetap karena ruas kanan yang selalu bernilai tetap maka berlaku p 1 banding t 1 = p 2 banding t 2 dengan t satunya adalah suhunya di keadaan awal dan t2 di sini adalah 3 dan akhir kemudian perhatikan bahwa Jadi sebenarnya suhu itu merupakan ukuran langsung dari energi kinetik suatu gas yang dimaksudnya ketika gas disimpan berubah maka otomatis energi kinetiknya itu juga berubah dan hubungan antara suhu dan energi kinetik dirumuskan dengan f x = f MKT berdua Energi kinetik gas nya kemudian F disini adalah derajat kebebasan ini adalah banyaknya partikel yang ada di dalam gas tersebut Lalu kain adalah konstanta boltzmann yang besarnya 1,38 kali 10 pangkat min 23 Joule k ^ min 1 dan t adalah suhu suhu mutlaknya ada disini terlihat bahwa ternyata hubungan antara X dan Y banding maka dapat kita tulis X1 banding X2 = p 1 banding T2 ya karena kan F aksen X bernilai tetap ya Sehingga didapatkan lumutnya seperti ini yang di sini perhatikan bahwa jadikan ini 1 banding t 1 = p 2 banding 32 jika p 2 nya kita pindahkan ke kiri dan ke satunya kita pindahkan ke kanan kirinya kan V1 banding V2 V1 banding V2 ya atau itu berarti di sini ke 1 banding keduanya = V1 banding V2 ya seperti itu. Jadi ini sama dengan ini kemudian kita masukkan bawa hp satunya itu adalah p Keduanya itu adalah 4 P sehingga didapatkan hasilnya ternyata F1 banding F2 = 1 banding 4 kayak gitu kan pengen bisa dicoret mukanya jadi ternyata perbandingan energi kinetik awal dan energi kinetik akhir gas yaitu adalah 1 banding 4. Oke inilah jawabannya sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Hukum tentang gas ideal meliputi empat hukum yang terdiri dari Hukum Boyle, Hukum Charles, Hukum Gay Lussac, Hukum Boyle-Gay Lussac. Dari setiap hukum tentang gas tersebut memuat persamaan yang berlaku sesuai bunyi hukum. Gas ideal adalah gas yang memenuhi beberapa anggapan-anggapan yang membahas sifat-sifat gas. Di mana ada enam sifat gas ideal yang menerangkan bagaimana jumlah, ukuran, dan gerak partikel-partikel gas. Sifat gas pertama adalah gas terdiri atas partikel-partikel yang jumlahnya sangat banyak. Kedua, partikel-partikel gas bergerak dengan laju dan arah yang beraneka ragam serta memenuhi Hukum Gerak Newton. Ketiga, partikel gas tersebar merata pada seluruh bagian ruangan yang ditempati. Keempat, tidak ada gaya interaksi antarpartikel kecuali ketika partikel bertumbukan. Sifat gas ideal yang kelima adalah tumbukan yang terjadi antar partikel atau antara partikel dengan dinding wadah adalah lenting sempurna. Dan keenam, ukuran partikel sangat kecil dibandingkan jarak antara partikel sehingga volumenya dapat diabaikan terhadap volume ruang yang ditempati. Gas merupakan zat yang volume dan bentuknya selalu berubah-ubah yang menempati suatu ruang dengan jarak antar partikel yang jauh. Kondisi tersebut membuat daya tarik antar partikel menjadi lemah. Ada empat hukum tentang gas ideal dan menerangkan persamaan yang berlaku untuk gas ideal. Bagaiamana bunyi dari masing-masing hukum tentang gas? Apa saja persamaan yang berlaku sesuai hukum tentang gas ideal? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Hukum Boyle Hukum Charles Hukum Gay Lussac Hukum Boyle–Gay Lussac Contoh Soal dan Pembahasan Contoh 1 – Sifat Gas Ideal Berdasarkan Hukum Tentang Gas Contoh 2 – Penggunaan Persamaan Sesuai Hukum Tentang Gas Contoh 3 – Penggunaan Persamaan Sesuai Hukum Tentang Gas Contoh 4 – Penggunaan Persamaan Sesuai Hukum Tentang Gas Baca Juga Hukum Newton I, II, III Hukum Boyle Volume gas dalam suatu ruang tertutup sangat bergantung pada tekanan P dan suhu T. Ketika suhu dijaga dalam keadaan tetap atau konstan, besar tekanan yang diberikan akan memperkecil nilai volumenya. Hubungan antara tekanan P dan volume V tersebut dikenal dengan Hukum Boyle. Bunyi Hukum Boyle“Apabila suhu gas yang berada dalam ruang tertutup dijaga konstan, maka tekanan gas berbanding terbalik dengan volumenya”. Berdasarkan hukum tersebut dapat dikatakan bahwa besar tekanan berbanding terbalik dengan besar volume. Semakin besar tekanan yang diberikan pada gas akat membuat nilai volume gas semakin kecil. Sebaliknya, semakin kecil tekanan yang diberikan akan membuat nilai volume gas semakin besar. Persamaan dari Hukum Boyle secara matematis dinyatakan melalui persamaan di bawah. Hukum Charles Volume gas dalam ruang tertutup dipengaruhi oleh besar suhu dan tekanan. Jika suhu gas dinaikkan maka gerak partikel-partikel gas akan semakin cepat sehingga volume gas bertambah. Sementara apabila tekanan tidak terlalu tinggi dan dijaga konstan proses isobaris maka volume gas akan bertambah terhadap kenaikan suhu. Hubungan antara volume dan suhu dikenal dengan Hukum Charles. Bunyi hukum Charles“Apabila tekanan gas yang berada dalam ruang tertutup dijaga konstan maka volume gas berbanding lurus dengan suhu mutlaknya”. Pernyataan dalam hukum tentang gas tersebut memiliki pengertian bahwa kenaikan suhu akan menyebabkan kenaikan volume. Begitu juga sebaliknya, penurunan suhu akan menyebabkan penurunan volume. Secara matematis, pernyataan yang terdapat pada Hukum Charles dinyatakan dalam persamaan berikut. Baca Juga Hukum Avogadro dan Penerapannya Hukum Gay Lussac Sebuah botol berisi gas yang berada dalam keadaan tertutup dapat meledak saat diberi tambahan suhu. Kondisi tersebut terjadi karena tekanan gas dalam botol meningkat karena adanya kenaikan suhu. Tekanan dan suhu juga memiliki hubungan yang ditetapkan dalam hukum Gay Lussac. Kesimpulan dari peristiwa tersebut adalah kenaikan suhu akan membuat besar tekanan gas meningkat dan penurunan suhu akan membuat tekanan gas menurun. Pernyataan yang sesuai dengan kondisi tersebut terdapat dalam bunyi Hukum Gay Lussac. Bunyi hukum Gay Lussac“Apabila volume gas yang berada pada ruang tertutup dijaga konstan, maka tekanan gas berbanding lurus dengan suhu mutlaknya”. Secara matematis pernyataan yang sesuai dengan hukum tentang gas berdasarkan bunyi hukum Gay Lussac dinyatakan melalui persamaan berikut. Baca Juga Hukum Perbandingan Volume – Gay Lussac Hukum Boyle–Gay Lussac Tiga hukum yang telah dibahas di atas menyatakan bahwa ada hubungan antara tekanan P, volume V, dan suhu T gas. Hukum Boyle-Gay Lussac merangkum ketiga hukum tersebut dalam sebuah persamaan. Secara matematis, hubungan tekanan, volume, dan suhu gas dinyatakan melalui persamaan di bawah. Contoh Soal dan Pembahasan Beberaoa soal berikut dapat sobat idschool gunakan untuk mengukur pemahaman materi terkait bahasan di atas. Setiap contoh soal gas ideal di bawah dilengkapi dengan pembahasan bagaimana penggunaan hukum tentang gas. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih Contoh 1 – Sifat Gas Ideal Berdasarkan Hukum Tentang Gas Perhatikan pernyataan berikut!1 Partikel gas tidak tersebar merata dalam ruangan2 Partikel-partikel gas bergerak dengan bebas3 Tumbukan antar partikel lenting sebagian4 Ukuran partikel sangat dibandingkan ruang yang ditempati5 Gerakan partikel memenuhi Hukum Newton Pernyataan yang benar tentang sifat gas ideal disebutkan oleh nomor ….A. 1, 2, dan 3B. 1, 3, dan 5C. 2, 3, dan 4D. 2, 4, dan 5E. 3, 4, dan 5 PembahasanPada gas ideal memenuhi sifat-sifat Partikel gas tersebar merata dalam ruanganPartikel-partikel gas bergerak dengan bebas 2Jenis tumbukan antar partikel atau tumbukan partikel dengan dinding wadah adalah lenting sempurnaUkuran partikel sangat dibandingkan ruang yang ditempati 4Gerakan partikel memenuhi Hukum Newton 5 Jadi, pernyataan yang benar tentang sifat gas ideal disebutkan oleh nomor 2, 4, dan 5.Jawaban D Baca Juga Persamaan Umum Gas Ideal PV = nRT Contoh 2 – Penggunaan Persamaan Sesuai Hukum Tentang Gas Suatu gas yang suhunya 127oC dipanaskan menjadi 227oC pada tekanan tetap. Volume gas sebelum dipanaskan adalah V. Volume gas setelah dipanaskan adalah .…A. 1/2 VB. 1/3 VC. 3/4 VD. 4/5 VE. 5/4 V PembahasanBerdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Suhu pertama T1 = 127o + 273o = 400oKSuhu kedua T2 = 227o + 273o = 500oKTekanan tetapVolume gas sebelum dipanaskan V1 = V Menghitung volume gas setelah dipanaskan V2V1/T1 = V2/T2V/400 = V2/500400V2 = 500VV2 = 500/400V = 5/4V Jadi, volume gas setelah dipanaskan adalah 5/4 E Contoh 3 – Penggunaan Persamaan Sesuai Hukum Tentang Gas Enam mol gas oksigen di dalam suatu tabung tertutup pada suhu kamar bertekanan 4 atm. Jika 1,5 mol gas tersebut telah digunakan maka tekanan gas di dalam tabung tersebut menjadi ….A. 0,25 atmB. 0,5 atmC. 1,0 atmD. 2,0 atmE. 3,0 atm PembahasanBerdasarkan keterangan pada soal dapat diperoleh informasi-informasi seperti berikut. Jumlah mol pada kondisi pertama n1 = 6 molTekanan pada kondisi pertama P1 = 4 atmJumlah mol pada kondisi kedua n2 =6 –1,5 = 4,5 mol Menghitung tekanan gas oksigen di dalam tabung pada kondisi kedua Jadi, tekanan gas di dalam tabung tersebut menjadi 3,0 E Contoh 4 – Penggunaan Persamaan Sesuai Hukum Tentang Gas Volume suatu gas ideal sebanyak 4 liter memiliki tekanan 1,5 atmosfer pada suhu27oC. Besar tekanan sebanyak 3,2 liter gas tersebut pada suhu 47oC adalah ….A. 0,2 atmB. 1 atmC. 1,5 atmD. 2 atmE. 3 atm PembahasanBerdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Volume gas pada kondisi pertama V1 = 4 literTekanan gas pada kondisi pertama P1 = 1,5 atmSuhu gas pada kondisi pertama T1 = 27o + 273o = 300oKVolume gas pada kondisi kedua V2 = 3,2 literSuhu gas pada kondisi kedua T2 47o + 273o = 330oK Menghitung tekanan gas pada kondisi kedua P2 Jadi, besar tekanan sebanyak 3,2 liter gas tersebut pada suhu 47oC adalah 2 D Demikianlah tadi ulasan materi empat hukum tentang gas dan persamaannya yang meliputi hukum Boyle, Charles, Gay Lussac, dan Boyle–Gay Lussac. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Hukum Kekekalan Massa – Lavoisier
RINGKASAN MATERI DAN PEMBAHASAN SOAL UN FISIKA SMA TENTANG TEORI KINETIK GASRingkasan materi dan pembahasan soal-soal ujian nasioanl fisika sma tentang teori kinetik gas ini meliputi Hukum Boyle-Gay Lussac, persamaan umum gas ideal, tekanan gas, kecepatan efektif, dan energi kinetik gas. HUKUM BOYLE-GAY LUSSACPERSAMAAN UMUM GAS IDEALKeteranganP = tekanan gas Pa.V = volume m3.n = mol = tetapan umum gas ideal 8,314 J/ = suhu mutlak K.N = jumlah partikel GASDengan Ek = energi kinetik rata-rata Joule.KECEPATAN EFEKTIFDengan ρ = massa jenis gas dan Mr = massa molekul relatif gram/mol.ENERGI KINETIK GASCONTOH SOAL TEORI KINETIK GAS DAN PEMBAHASANNomor 1 UN 2010Suatu gas ideal mula-mula menempati ruang yang volumenya V dan tekanan P. Jika suhu gas menjadi 5/4 T dan volumenya menjadi 3/4 V maka tekanannya menjadi...A. 3/4 PB. 4/3 PC. 3/2 PD. 5/3 PE. 2PPembahasanGunakan rumusP1 . V1 / T1 = P2 . V2 / T2P . V / T = P2 . 3/4 V / 5/4 TP2 = 5/3 PJawaban DNomor 2 UN 2011Faktor yang mempengaruhi energi kinetik gas didalam ruang tertutup1 tekanan2 volume3 suhu4 jenis zatPernyataan yang benar adalah...A. 1 dan 2B. 1 dan 3C. 1 dan 4D. 2 sajaE. 3 sajaPembahasanPersamaan energi kinetik gas adalah Ek = 3/2 kT, jadi yang mempengaruhi energi kinetik gas adalah ENomor 3 UN 2009Gas ideal yang berada dalam suatu bejana dimampatkan ditekan, maka gas akan mengalami...A. penurunan laju partikeB. penurunan suhuC. kenaikan suhuD. penambahan partikel gasE. penurunan partikel gasPembahasanBerdasarkan persamaan umum gas ideal P . V = N k T, diperoleh tekanan sebanding dengan suhu. Jadi jika tekanan besar maka suhu naik dan CNomor 4Sepuluh liter gas ideal suhunya 127oC mempunyai tekanan 165,6 N/m2. Banyak partikel gas tersebut adalah...A. 2 . 1019 partikelB. 3 . 1019 partikelC. 2 . 1020 partikelD. 3 . 1020 partikelE. 5 . 1019 partikelPembahasanUntuk menghitung banyak partikel gas, gunakan persamaan umum gas ideal, tetapi hitung terlebih dahulu mol gasPV = n R T165,6 N/m2 . 0,01 m3 = n . 8,314 J/mol . K . 127 + 273 K1,656 Nm = n . 3325,6 J/moln = 1,656 Nm / 3325,6 J/mol = 0,0005 molMenghitung banyak partikelN = n Na = 0,0005 . 6,02 . 1023 = 0,003 . 1023 = 3 . 1020 PartikelJawaban DNomor 5Jika P = tekanan, V = volume, T = suhu mutlak, N = jumlah partikel, n = jumlah mol, k = konstanta Boltzmann, R = tetapan umum gas, dan N0 = bilangan Avogadro, maka persamaan gas berikut benar, kecuali...A. PV = nRTB. PV = N/N0 RTC. PV = nkTD. PV = NkTE. PV = nN0KtPembahasanRumus yang salah dari persamaan umum gas ideal adalah PV = n k T karena seharusnya PV = NkTJawaban CNomor 6Suatu gas ideal menempati ruang yang volumenya V, suhu T dan tekanan P. Kemudian dipanaskan sehingga volumenya menjadi 5/4 V dan tekanannya menjadi 4/3 P. Jadi pada pemanasan itu suhu gasmenjadi...A. 3/4 TB. 4/3 TC. 4/2 TD. 3/2 TE. 5/3 TPembahasanP1 . V1 / T1 = P2 . V2 / T2P . V / T = 4/3 P . 5/4 V / T2 coret P dan V1/T = 5/3 / T2T2 = 5/3 TJawaban ENomor 7Suatu gas ideal mula-mula menempati ruang yang volumenya V dan tekanan P. Jika suhu gas menjadi 5/4 T dan volumenya menjadi 3/4 V, maka tekanannya menjadi...A. 3/4 PB. 4/3 PC. 3/2 PD. 5/3 PE. 2 PPembahasanP1 . V1 / T1 = P2 . V2 / T2P . V / T = P2 . 3/4 V / 5/4T coret 4, V dan TP = P2 3/5P2 = 5/3 PJawaban DNomor 8Sejumlah gas ideal berada didalam ruangan tertutup mula-mula bersuhu 27oC. Supaya tekanannya menjadi 4 kali semula, maka suhu ruangan tersebut adalah...A. 108 oCB. 297 oCC. 300 oCD. 927 oCE. 1200 oCPembahasanP1 . V1 / T1 = P2 . V2 / T2P . V / 300 K = 4P . V / T2 coret P dan V1/300 K = 4/ T2T2 = 4 . 300 K = 1200 K = 1200 - 273 0C = 927 0CJawaban DNomor 9Gas ideal yang berada dalam suatu bejana dimampatkan ditekan maka gas akan mengalami...A. Penurunan laju partikelB. Penurunan suhuC. Kenaikan suhuD. Penambahan partikel gasE. Penurunan partikel gasPembahasanJika gas ditekan berarti menambah tekanan yang mengakibatkan kenaikan suhu karena tekanan sebanding dengan suhu PV = n R TJawaban CNomor 10Dalam ruangan yang bervolume 1,5 liter terdapat gas yang bertekanan 105 Pa. Jika pertikel gas memiliki kelajuan rata-rata 50 m/s, maka massa gas tersebut adalah...A. 80 gramB. 8 gramC. 3,2 gramD. 0,8 gramE. 0,4 gramPembahasanUntuk menghitung massa gas gunakan persamaan tekanan gasP V = 1/3 N m v2105 . 1,5 10-3 = 1/3 N m 502150 = 1/3 N . m 2500N m = 750 / 2500 = 0,3 kgN m = 300 gram N m = massa seluruh gas sedangkan m = massa satu partikel gasJawaban -Nomor 11Partikel-partikel gas oksigen didalam tabung tertutup pada suhu 20oC memiliki energi kinetik 2140 J. Untuk mendapatkan energi kinetik 6420 J kita harus menaikkan suhunya menjadi...A. 879 oCB. 606 oCC. 589 oCD. 60 oCE. 40 oCPembahasanGunakan perbandingan persamaan energi kinetik gasEK1 / EK2 = 3/2 k T1 / 3/2 k T2 = T1 / T22140 J / 6420 J = 20 + 273 K / T20,33 = 293 K/T2T2 = 293 K / 0,33 = 887,9 K = 887,9 - 273 = 615 CoJawaban -Nomor 12Gas ideal bersuhu T1 diisikan kedalam tabung. Jika gas dipanaskan sampai suhunya T2 T2> T1, maka pengaruh pemanasan pada kecepatan partikel gas v, energi kinetik Ek dan jumlah partikelgas adalah..PembahasanJika suhu gas dinaikkan akan mengakibatkan kenaikan tekanan, volume dan energi ANomor 13Gas ideal dalam ruang tertutup bersuhu T kelvin mengalami penurunan suhu menjadi ½ T kelvin. Perbandingan energi kinetik partikel sebelum dan sesudah penuruan suhu adalah...A. 1 4B. 1 2C. 1 1D. 2 1E. 4 1PembahasanGunakan perbandingan persamaan energi kinetik gas lihat soal nomor 8EK1 / EK2 = T1 / T2EK1 / EK2 = T / 1/2T = 2 / 1 = 2 1Jawaban DPembahasan soal teori kinetik gas video youtube
partikel partikel gas oksigen didalam tabung tertutup